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The evolution of broad-band laser pulses in nonlinear dispersive media, such as one-dimensional and
planar waveguides, attracts a considerable attention in last decades. The well-known nonlinear Schrodinger
equation (NSE) is one of the most commonly used in optics to describe the propagation of narrow-band light
pulses, but in the frames of ultrashort optics, it is necessary to use the more general nonlinear amplitude
equation (NAE). It works very well for nanosecond and picosecond as well as attosecond and femtosecond
optical pulses. The influence of higher orders of dispersion and nonlinearity of the medium becomes
significant for broad-band laser pulses. As a result it is needed to include additional terms in NAE that govern these
effects.

In the present work the propagation of bright solitons under the influence of third-order dispersion
and self-steepening effect in single-mode fibers is analytically and numerically studied. Such optical pulses can
be observed as a result of the dynamic balance between higher orders of dispersive and nonlinear phenomena. New
exact analytical soliton solution of NAE in the form of cnoidal wave is found. The solution is presented by
Jacobi elliptic delta function. It is shown that at certain values of the parameter κ the solution can be reduced to
sech-soliton.

Тhe obtained results are important for the better understanding of the propagation of bright optical
solitons in nonlinear dispersive media under the influence of third order of linear dispersion and self-
steepening effect. They can be used in telecommunications technology for signal transmission across longue
distances.
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The most commonly used equation in nonlinear optics happens to be the Nonlinear Schrodinger
equation (NSE) [1,2]. The NSE is derived for narrow-band pulses, for which it is satisfied the condition Δω<<ω0.
This concerns nano and picosecond laser pulses.

However, nowadays it is easy to obtain broad-band optical pulses where Δω≈ω0. Such light pulses are
phase-modulated or they are with femto or attosecond duration. For such optical pulses, in ultrashort optics
(where T0 << 1 ps) the influence of the nonlinearity and the dispersion are significant. It is well-known that
NSE describes very well the evolution of slowly varying amplitude function of the envelope of narrow-band pulses
in optical fibers but for broad-band laser pulses it is necessary to use the more general nonlinear amplitude
equation NAE [3,4]. It differs from the standard NSE with two additional terms, which govern the third order of
linear dispersion (TOD) and dispersion of nonlinearity.

Thus, the biggest advantage of NAE is that it can be applied in both cases – for pulses with broad-band
and narrow-band spectrum.

The soliton regime of propagation of optical pulses in isotropic medium under the influence of third
order of linear dispersion and dispersion of nonlinearity, described in the frames of NAE was studied by authors
in [5]. New exact analytical soliton solution of NAE is found by using mathematical method described in [6].

The optical soliton is a wave packet which propagates in different nonlinear waveguide media with low
losses at a constant velocity without changing its shape over significant distances.



Fig.1. Gaussian pulse in the presence of TOD, L'D=T0
3/|3| [1].

It is well known that for ultrashort optical pulses it is
necessary to be included (TOD) 3 even when group
velocity dispersion 2≠0.

As a result of that the shape of the pulse becomes
asymmetric with oscillatory structure on one of its edges,
depending on the sign of 3 (Fig. 1).
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Fig.2. Dispersionless case of self-steepening of Gaussian 
pulse, z=10 LNL and 20 LNL, s=1/0T0 [1].

Self-steepening (s=1/0T0) is a higher-order nonlinear effect
that results from the intensity dependence of group velocity
and leads to an asymmetry in the shape and spectrum of
ultrashort pulses.

Their peaks shift toward the trailing edges, moving at lower
speed than wings (Fig. 2).



We are investigating  the evolution of one-dimensional optical pulses in nonlinear single mode waveguides:

(1)

where А is the amplitude function of the pulse’s envelope, u is pulse’s group velocity, n2 is the nonlinear
refractive index, k0 is the wave number, k ̋ and k ̋ʹ are respectively the second and third order of linear
dispersion and .

We are going to use “local time” coordinate system:

(2)

We are making the following substitutions:
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Having in mind the substitutions from the previous slide and the following conditions:

(3)

(4)

(5)

(6)

Nonlinear Amplitude Equation can be presented in the form:

(7)
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We are going to find a solution of our basic equation (1) by following the algorithm:

1) We make the substitution A(x,t)=F(t)exp(iat+ibx) then the amplitude equation takes the form (а and b
are constants about to be found):

(8)

2) In this equation we are going to divide the real and the imaginary parts on both sides of the equality:

Rе: (9)

Im: (10)

We can reduce the order of equation (10) by integrating it. After couple of transformations and some
mathematical operations we come up with the following system of equations:

Rе: (11)

Im: (12)
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3) The expressions (11) and (12) form a system of two differential equations of the same type. They refer to the
same unknown function, therefore they should fully match. In order to do that, the coefficients in front of
Ф, Φ ̋ and Ф3 and the free term should be equal. From the equalization of (11) and (12) are made the
following assumptions:

 The integration constant (13)

 From the equalization of the coefficients in front of Ф3 we find an expression for the constant a:

(14)

 From the equalization of the coefficients in front of Φ and having in mind (14) we find an expression, 
defining the constant b:

(15)
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4) Having in mind that the two equations in the system (11) and (12) must match, the equation for
the unknown function Φ can be presented as follow:

This equation is of the type ,
where the parameter 0<<k<<1. When Ф(0)=1 the
solution of this equation is Jacobi delta function
dn (t,k).

The graphic of this function for different values of k
is shown on Fig. 3. When k=1, the Jacobi delta
function is transform into sech-function:
dn(t,k)=sech(t).

(16)
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5) Considering the expressions from the previous slide and when the following conditions are applied:

(17)

(18)

the solution of the equation (16) can be presented by Jacobi’s elliptical delta function:

F(t)=dn(t,k)                                                                                 (19)

6) Going back trough all the substitutions and assumptions, we find the following solution of the basic 
equation (7):

A(x,t)= dn(t,k)exp(iat+ibx),                                                               (20)

where the cosntants a and b are defined by the expressions (14) and (15).
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From the expression (17) we determine the initial intensity which is needed to form a soliton:

(22)

Here |A0|2
shr is the initial intensity for forming a soliton, based on the NSE.

The condition (18) gives the relation between the parameters of the medium and the
parameters of the initial impulse, for which it can be formed a soliton (when k=1):

(23)

It is clearly seen from the expression (18) that the value of the constant k is defined by the parameters 
of the media and the optical pulse. When k=1 a soliton solution of equation (16) is obtained: 

F(t)=sech(t)                                                                               (21)
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(24)

(25)

When we assume that .In this case the higher order of nonlinearity is weak. Therefore,
the self-steepening parameter is equal to s=2/α , where α is the number of oscillations under the
envelope of the optical pulse.
Having in mind that the expressions for the constants a and b will take the following
approximate form:

In our investigations T0 is the initial duration of laser pulses and ω0 is the main frequency.

0/2  n
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For laser pulse with carrier wavelength =1,45 m propagating in silica fiber with the following
parameters: n0=1,453, ngr=1,467, |k"|= 1,68.10-26s2/m, |k"'|= 1,17.10-40s3/m, it is defined that
k0≈4,33.106 m-1. In order to be observed bright soliton (k=1) it is necessary the initial duration of
the pulse to be Т0≈7,5 fs and a ≈4. It turns out that the initial intensity needed for formation of
fundamental soliton is approximately three times bigger of that of the typical Schrodinger soliton.
The graphic of the soliton solution (20) is presented of Fig. 4.

Fig.4. Bright optical soliton, given by the solution (20).
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 In the present work it is investigated the evolution of broad-band laser pulses in nonlinear

dispersive media.

 Тhe propagation of bright optical solitons under the influence of third-order of linear

dispersion and self-steepening effect in single-mode fibers is analytically and numerically

studied.

 New exact analytical soliton solution of NAE in the form of cnoidal wave is found. The

solution is presented by Jacobi elliptic delta function.

 It is shown that at certain values of the parameter k the solution can be reduced to sech-soliton.

 There have been made graphics of the obtained solutions.
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